Generalized parabolic Marcinkiewicz integrals associated with polynomial compound curves with rough kernels
نویسندگان
چکیده
منابع مشابه
Parabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملBoundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
Let [Formula: see text] satisfy that [Formula: see text], for any given [Formula: see text], is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text]. The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz spa...
متن کاملBmo Estimates on Vanishing Generalized Morrey Spaces for Commutators of Marcinkiewicz Integrals with Rough Kernel Associated with Schrödinger Operator
Let L = −∆ + V (x) be a Schrödinger operator, where ∆ is the Laplacian on R, while nonnegative potential V (x) belonging to the reverse Hölder class. We establish the boundedness of the commutators of Marcinkiewicz integrals with rough kernel associated with schrödinger operator on vanishing generalized Morrey spaces.
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملBoundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2020
ISSN: 2391-4661
DOI: 10.1515/dema-2020-0004